ROI Stats July: Portfolio(+1.18%) vs SP500(-6.27%) June: Portfolio( 0.00%) vs SP500(+3.96%) May: Portfolio(-0.76%) vs SP500(+1.26%) Trade Stats +---------+---------+-------+---------+------+--------+--------+--------+ | Months | Entries | Exits | Win% | PF | TScore | ZScore | Optf | +---------+---------+-------+---------+------+--------+--------+--------+ | Jul | 2 | 1 | 100.00% | inf | inf | 0.00 | inf | | Jun | 0 | 0 | 0.00% | 0.00 | 0.00 | 0.00 | 0.00% | | May | 5 | 6 | 66.67% | 1.46 | 0.41 | 1.94 | 21.13% | | Last 3 | 7 | 7 | 71.43% | 1.68 | 0.61 | 1.75 | 29.01% | | Last 6 | 111 | 116 | 61.21% | 1.10 | 0.39 | - 1.10 | 5.36% | | Last 12 | 60 | 60 | 60.00% | 0.90 | - 0.29 | 0.19 | -6.50% | | All | 207 | 206 | 64.56% | 1.46 | 2.14 | - 2.10 | 20.40% | +---------+---------+-------+---------+------+--------+--------+--------+ Notes: * PF - average profits expected per trade: > 1.0: $1 invested returns > $1 (profitable) = 1.0: $1 invested returns $1 (breakeven) < 1.0: $1 invested returns < $1 (loss). * TScore - observed probability due to chance at 95% CI: >= 1.645: not just dumb luck <= 1.645: shorter duration = 0: might be worthy to invest * ZScore - duration of Win/Lose streaks: >= 1.645: shorter duration <= -1.645: longer duration. * Optf - optimal percent of capital to invest: > 0: might be worthy to invest <= 0: save your money.
The critical ingredient is a maverick mind. Focus on trading vehicles, strategies and time horizons that suit your personality. In a nutshell, it all comes down to: Do your own thing (independence); and do the right thing (discipline). -- Gil Blake
Tuesday, August 14, 2012
Portfolio Performance - July 2012
Saturday, May 05, 2012
Portfolio Performance - Apr 2012
ROI Stats April: Portfolio (-1.75%) vs SP500 (-0.75%). March: Portfolio (+3.25%) vs SP500 (+3.13%). Trade Stats +---------+---------+-------+--------+------+--------+--------+---------+ | Months | Entries | Exits | Win% | PF | TScore | ZScore | Optf | +---------+---------+-------+--------+------+--------+--------+---------+ | Apr | 2 | 2 | 50.00% | 0.42 | - 0.41 | inf | -70.13% | | Mar | 6 | 7 | 71.43% | 4.06 | 1.54 | 0.68 | 53.82% | | Last 3 | 14 | 17 | 52.94% | 0.71 | - 0.47 | - 0.99 | -21.60% | | Last 6 | 38 | 38 | 63.16% | 1.08 | 0.18 | - 0.42 | 4.85% | | Last 12 | 79 | 81 | 58.02% | 0.85 | - 0.56 | - 0.22 | -10.45% | | All | 200 | 199 | 64.32% | 1.46 | 2.07 | - 2.30 | 20.14% | +---------+---------+-------+--------+------+--------+--------+---------+ Notes: * PF - average profits expected per trade: > 1.0: $1 invested returns > $1 (profitable) = 1.0: $1 invested returns $1 (breakeven) < 1.0: $1 invested returns < $1 (loss). * TScore - observed probability due to chance at 95% CI: > 1.645: not just dumb luck <= 1.645: dumb luck. * ZScore - duration of Win/Lose streaks: >= 1.645: shorter duration <= -1.645: longer duration. * Optf - optimal percent of capital to invest: > 0: might be worthy to invest <= 0: save your money.
Sunday, March 25, 2012
Portfolio Performance - Feb 2012
February 2012 Stats # of Entries...........6 # of Exits.............8 WinRatio..............37.50% Portfolio's ROI......- 4.35% Market's ROI.........+ 4.06% Cumulative Stats WinRatio..............64.21% Profit Factor..........1.45 t-Test.................2.01 Half-Kelly............19.79%Very poor performance for the month of February. The overall market did wonderful. The portfolio was heading in to the last week of February with great results, as well. But, 2 stocks took the portfolio out of the running: TSRA & CPHD. This hit created the worst drawdown for the portfolio since 2010.
As a result of this drawdown; I am adjusting the trading system to account for volatility impacts. This is the first adjustment to the trading system since creation back in 2010. The adjustment involves overlaying a stock & market volatility filter to the system.
On a brighter note; I am heading to Alabama for a little R&R with the family. We'll be around Lewis Smith Lake and the Birmingham area; so if anyone has any cool restaurants or places to see...drop me a line.
Later Trades,
MT
Saturday, February 11, 2012
Portfolio Performance - January 2012
January 2012
I'm doing something different for 2012. Reading Diary of a Commercial Commodities Trader from Peter Brandt gave me the idea. Peter does a great job of analyzing his trades from a chart technician perspective in real-time through the book. I normally don't care what the charts look like in choosing my trades. Just take the signals the system gives me.
But, the system often generates too many trades for the amount of cash I have on hand. I've not had a good handle on which of the few from the many I should select for that day's cash on hand. For 2012; I'll analyze each signal's chart before and after the trade. See what patterns emerge from this analysis. Worst case...just a bunch of random charts with no impact to the bottom line. Best case...I find a filter or new criteria to add to my system's signal selection process.
An example chart from January's best trade - SCSS...
An example chart from January's worst trade - TYPE...
Finally, want to thank my family for a wonderful visit in Texas. Great food and conversation. Awesome trip!
Later Trades,
MT
# of Entries..........10 # of Exits.............9 WinRatio..............70.00% Portfolio's ROI......+ 3.31% Market's ROI.........+ 4.36%Market beat us this month. But, it was a winning month and a good start to the new year. I'll take it.
I'm doing something different for 2012. Reading Diary of a Commercial Commodities Trader from Peter Brandt gave me the idea. Peter does a great job of analyzing his trades from a chart technician perspective in real-time through the book. I normally don't care what the charts look like in choosing my trades. Just take the signals the system gives me.
But, the system often generates too many trades for the amount of cash I have on hand. I've not had a good handle on which of the few from the many I should select for that day's cash on hand. For 2012; I'll analyze each signal's chart before and after the trade. See what patterns emerge from this analysis. Worst case...just a bunch of random charts with no impact to the bottom line. Best case...I find a filter or new criteria to add to my system's signal selection process.
An example chart from January's best trade - SCSS...
An example chart from January's worst trade - TYPE...
Finally, want to thank my family for a wonderful visit in Texas. Great food and conversation. Awesome trip!
Later Trades,
MT
Sunday, January 22, 2012
Portfolio Performance - December 2011
# of Entries..........10 # of Exits.............9 WinRatio..............77.78% Portfolio's ROI......- 0.14% Market's ROI.........+ 0.85%I believed December was going to be a great month. You can see with a 78% win ratio...we were more right than wrong for the month. But, we took a really bad hit on one of the positions. That's what is difficult about the market right now. Most of the trading surprises are still to the downside. Looking forward to the trend of upward surprises.
That's actually a study I might explore - tracking the surprise factor. Is the market showing a trend of upside surprises or downside surprises? Or is the market caught in a surprise stasis? How do each of these scenarios effect the system?
For the year of 2011 - the portfolio eaked out a +4.00% return. Given the volatility of the market; that's a whole lot of work for very little gain. But, we survived. Lived to play another year. In the end, glad to put 2011 to rest and start 2012.
On a personal note...really excited about taking a trip back home to Texas later this month. I'll be visiting Dallas (Grapevine area), followed by Houston, and finally home sweet Texas home. Excited about visiting with family, eating great Texas food, and hopefully warmer temperatures
.
Later Trades,
MT
Saturday, December 24, 2011
Portfolio Performance - November 2011
November 2011
Another less than stellar month for the portfolio. Even though we sneaked in a win over the market...it was not enough to write home about.
What this portfolio needs more than anything is a big winner to close out the year. But, time is definitely running out on that option.
That's probably the most difficult part of trading the system in the back half of 2011 - the lack of big winners. The long-only system had the uncanny ability to miss almost all of the huge upside moves and catch most of the downside ones. Despite its penchant for missing the upside - the portfolio has hung in there and weathered a very volatile market environment.
I will add the following goals for 2012:
That's it from the cold Midwest - where I'll spend the day smoking 2 Texas Dr. Pepper briskets. We'll use one of them for Tex-Mex tonight and the other for BBQ sandwiches tomorrow. Can't wait.
I wish everyone a very Merry Christmas and a Happy New Year!
Later Trades,
MT
# of Entries...........5 # of Exits.............2 WinRatio..............50.00% Portfolio's ROI......+ 0.66% Market's ROI.........- 0.51%
Another less than stellar month for the portfolio. Even though we sneaked in a win over the market...it was not enough to write home about.
What this portfolio needs more than anything is a big winner to close out the year. But, time is definitely running out on that option.
That's probably the most difficult part of trading the system in the back half of 2011 - the lack of big winners. The long-only system had the uncanny ability to miss almost all of the huge upside moves and catch most of the downside ones. Despite its penchant for missing the upside - the portfolio has hung in there and weathered a very volatile market environment.
I will add the following goals for 2012:
- Explore a market direction filter for the system. I've exhausted many of the common ones already. But, believe there may be some value in a breadth reading of all market instruments. Possibly like the Breadth Ratio but instead of volume using ATR. Similar to the Vortex Ratio. Another idea is to utilize the correlation reading of all market instruments to ascertain the investing environment.
- Determine if certain sectors are good or bad for the system. Over the past year I have observed the Pharmaceuticals and Oil & Gas sectors have not faired so well with the system.
- I still have not analyzed earning announcements and their possible impact on the system. This is a must to-do for 2012.
That's it from the cold Midwest - where I'll spend the day smoking 2 Texas Dr. Pepper briskets. We'll use one of them for Tex-Mex tonight and the other for BBQ sandwiches tomorrow. Can't wait.
I wish everyone a very Merry Christmas and a Happy New Year!
Later Trades,
MT
Thursday, November 24, 2011
Portfolio Performance - October 2011
October 2011
# of Entries...........1 # of Exits.............5 WinRatio..............20.00% Portfolio's ROI......+ 0.27% Market's ROI.........+10.77%
October was just plain ugly for the portfolio. Didn't participate any in the market's advance. When the system did try to jump in...it got punished...as you can see from the 20% win ratio. Really frustrating.
I'm afraid November so far is much the same. As you will see when those numbers are reported.
Times like these are the most difficult for a system trader. You're following all your rules. You're doing all you're supposed to do. But, your portfolio is not showing any results. That's what tough about this game. It reminds me of the following quote...
"It's not the first guy out of the water, or the first one done with the run or the obstacle course. It's the guys who wants it bad enough and have the mental toughness to simply make it through. The ones who never give up." -- What it takes to be a Navy Seal by a retired Navy Seal.
No, not comparing system traders to Navy Seals. But, I do think a lot of what makes system traders successful is never giving up. Having the mental toughness to simply make it through times like this.
Speaking of trading in tough times...I found the paper shared by Mebane Faber to be fascinating. Basically, investing in low-beta stocks are similar in profile to selling puts. Earn a premium for taking all of the downside risk while not participating fully in market rallies. Lots of trading gems in that paper.
Okay, on to other things. I have been busy lately with releasing a few Python modules over on GitHub. The first one covers some basic statistical functions. Useful when you want a series of 50-day simple moving averages or the Welles Wilder moving averages to chart. Check it out here:
- statio - http://github.com/TaylorTree/statio
The other one covers pretty formatting of data. This package is very alpha - so could change at any time. But, this one is useful when you want to print a list of Python lists or dictionaries based on various formatting options. Check it out here:
- printio - http://github.com/TaylorTree/printio
Finally, hope everyone enjoyed a very Happy Thanksgiving. Mine was good but do miss home.
Later Trades,
MT
Saturday, October 08, 2011
Portfolio Performance - September 2011
# of Entries...........6 # of Exits.............9 WinRatio..............66.67% Portfolio's ROI.......+0.76% Market's ROI..........-2.15%
August 2011
# of Entries...........0 # of Exits.............1 WinRatio...............0.00% Portfolio's ROI.......-3.40% Market's ROI..........-5.68%
September 2011
# of Entries..........14 # of Exits.............9 WinRatio..............66.67% Portfolio's ROI.......-2.13% Market's ROI..........-7.18%
What a crazy 3 months this has been in the market. Despite the crazy market; the system performed better than I expected. I've only interceded once in the past 3 months. Going to cash just prior to August 2nd's debt ceiling deadline. The reason for interceding? I knew the system had never been tested over such an event and was not willing to risk real money on an event as crazy as that one.
In hindsight, interceding was a bad decision. August would have been a profitable month for the system. But, August would also have been an extremely volatile month for the portfolio. So, I lost money in order to sleep better. That's the difficulty in trading systems. We feel the fear...they do not.
Later Trades,
MT
Sunday, July 17, 2011
Portfolio Performance - June 2011
# of Entries..........12 # of Exits............10 WinRatio..............30.00% Portfolio's ROI.......-7.72% Market's ROI..........-1.83%
June felt like a death by a thousand paper cuts. The month of June stands as the highest system entries, lowest win ratio, and largest monthly drawdown. It's always difficult to continue taking trades when your system is performing badly. Especially, when you can clearly see why the market is a mess for your system.
The slippery slope is to stop trading until the traffic clears. Do that and sure enough you will miss the turn. I have entertained in the past a more systematic trading halt. Stop taking trades for the month when some trading metric hits a filter. The trading metric could be a win ratio, profit factor, expectancy, drawdown, and a host of others.
Problem is: I have never found a way to improve systems by trading the equity curve outside of Anti-martingale fixed-fractional position-sizing. Even when the system exhibits a high trade dependency. That's not to say it isn't something to explore for your systems. Especially, since improving a system is dependent upon your own definition of improvement.
No, experiencing a big drawdown is the toughest thing a system trader will encounter. Mostly because there's nothing you can do about it but sit on your programming hands, continue taking entries despite how you feel, and patiently wait it out.
Later Trades,
MT
Tuesday, July 12, 2011
Monk Traders
Michael Martin wrote an interesting post on the importance of fundamentals in trading. Its a good post with solid points. Especially, the part about using your knowledge of the fundamentals of the market in build trading systems.
What struck a chord was the author's take on system traders. Now, I understand who Martin was really writing about. He was referring to the traders who take the easy way out. Those traders who build Rube Goldberg machines rather than a trading system.
But, there are system traders out there who spent time in the trenches learning as much as they could about the markets they trade. Only to give up that knowledge in order to trade the systems they build.
I had to give these trading monks a plug...and comment on Martin's post.
Martin edited my comment; making me sound smarter than I am. Thanks. Below is the unedited but less eloquent version:
Later Trades,
MT
What struck a chord was the author's take on system traders. Now, I understand who Martin was really writing about. He was referring to the traders who take the easy way out. Those traders who build Rube Goldberg machines rather than a trading system.
But, there are system traders out there who spent time in the trenches learning as much as they could about the markets they trade. Only to give up that knowledge in order to trade the systems they build.
I had to give these trading monks a plug...and comment on Martin's post.
Martin edited my comment; making me sound smarter than I am. Thanks. Below is the unedited but less eloquent version:
You're likely right...the title/moniker of the "expert" systematized trend follower could be their way to mask insecurity about their ignorance of fundamentals. But, let me present another side...
I agree with your point that understanding fundamentals are important; even for a systematic trader. But, believe there are levels of system trading that have to be considered.
If a person wants to become a non-system trader; then yes...long years of study of both technical and fundamental.
If a person wants to become a system trader; then yes...long years of study of both technical and fundamental.
Both sets will need to trade and gain experience putting their knowledge to use and more importantly the timing of that knowledge. The system trader is really an automator in this case. Taking intuitive rules the non-system trader has and standardizing them into something the computer can understand and spit out. From there, the system trader can evaluate the results and as you mention review the fundamentals. Trade based on the combination. Many system traders fall into this category.
There is another level of system trading. Requiring an additional set of skills in addition to the technical and fundamental.
These system traders must forego all their hard-earned knowledge and allow the system to work as designed once placed into production. They cannot care that Sugar fundamentals are aligning with price. They are indeed working on the average expectation of all their trades. And cannot get caught on the slippery slope of asking "why" they've lost money on the trade.
So, there is a remote chance you were talking with this level of system trader. Whose title/moniker wasn't created to mask insecurity. But, to shield themselves from things which make trading the system hard. In some ways, these system traders are monks. Having to purge all trading belongings and follow only the rules given by their system.
But, I did mention it being a remote chance you were talking with this level of system trader. Anyone in this category would not use the word "expert" in their title. The longer I trade this way the less of an expert I become.
Look forward to your book. Of course, only in designing my systems.
Later Trades,
MT
Thursday, June 23, 2011
Portfolio Performance - May 2011
Sunday, May 08, 2011
Portfolio Performance - Apr 2011
# of Entries...........7 # of Exits.............6 WinRatio..............66.66% Portfolio's ROI.......+0.89% Market's ROI..........+2.85%
April breaks the portfolio's winning streak over the market. Wasn't a bad month for the portfolio; just couldn't get enough trades due to the earnings season.
April also marked a milestone birthday for yours truly. The family made it real special by shipping in live crawfish direct from Louisiana.
Ca C'est Bon!
MT
Tuesday, April 12, 2011
Portfolio Performance - Mar 2011
# of Entries...........8 # of Exits............10 WinRatio..............70.00% Portfolio's ROI.......+3.38% Market's ROI..........-0.10%
One of the challenges of trading this system is signal selection. The system generates more signals than money available. A ranking algorithm aids in signal selection and brings the portfolio closer to the signals the simulation would have taken.
Over time, I have developed a negative bias towards certain signals. By skipping these outliers; I am distancing my portfolio's results from the simulation's results. And I'm struggling with this. What would be ideal is to identify the quantitative nature of these outliers and add to the system's rules. Of course, after rigorous testing. Until then, I'm left with this uneasy balance between trading the system and using bias in my signal selection process.
Case in point: several of the signals lately (as of 04/12/11) could possibly be held during earnings announcements. I try to avoid holding a stock over its earnings announcement. Yet, the system's simulation tests did not contain this rule set and continued to produce excellent returns overall. Testing my bias is difficult due to the various earnings dates involved. Foregoing earnings season all together in simulations is not an option due to the cash drag effect. One solution to this problem is to collect enough walk-forward data points and manually test the effects of earnings announcements on returns. But, this is a simple example of how a trading bias can manifest in trading your system much differently than your trading system's simulation.
Later Trades,
MT
Saturday, March 12, 2011
Portfolio Performance for Feb 2011
# of Entries...........8 # of Exits.............7 WinRatio..............80.00% Portfolio's ROI........5.82% Market's ROI...........3.20%
February was a good month for the market and portfolio. The portfolio edging out the market's return for another month.
Going to go on a bit of a rant here. Something that has bothered me a bit in the trading world for years -- trading psychology. Trading psychology is a market unto itself. Books, blogs, websites, all kinds of info to help you become a better trader. Most of it? The wrong focus.
Why? The crux of the trading psychology stance is -- don't trade a system (even if its profitable) if it doesn't match your personality. It's all about finding the right match. Like those eHarmony commercials.
The trading world wants to embrace a yoga or martial arts viewpoint on trading success. Reminds me how people judged martial arts disciplines prior to UFC coming to light. In fact, I wrote about trading and fighting in a post almost 6 years back here.
Before there was a venue for everyone to see which fighting styles worked...students were inundated with rhetoric, philosophy, etc. You had all these theories about what worked in a real fight. But, nobody was fighting. Just talking and practicing strict rigid disciplines. Then the UFC came along and all these martials arts disciplines came together and actually fought. The winner shocking everyone. All these wonderful well thought-out disciplines just failed. All the finding one's chi and structured katas just failed. Turns out...you've got to fight. It isn't about finding yourself. Isn't about finding your chi. It's about fighting your opponent. It's about taking advantage of your strengths and their weaknesses. See this video for the story behind UFC and the 1st winner of UFC. Please note...video shows real fighting. And be sure to see Ken Shamrock's interview around 6:18 mark. Along with Joe Rogan's comments around 9:24.
That's why I wince every time I hear or read about finding a trading system that fits your personality. Or there's only one way of trading - as we often hear with trend following. That's a religion all unto itself.
Gracie took advantage of his amazing ground game and everyone's lack of to win. But, you cannot stop there. You have to adapt...because your competitor's adapt. The market adapts. The UFC adapts. There is no holy grail. No one way to do things. No black and white. It's all gray. It's all changing...all the time. Cause the participant's are learning all the time.
It's not about finding a system your comfortable with. It's about getting comfortable with a winning system.
Despite the religion behind trend-following...I think it's one of the best places to learn how to fight. It teaches you how to get comfortable on your back when the market is clearly kicking your tail. It limits the number of decisions you have to make at a time when your trading instincts and intellect are screaming to run away. Teaching you how to get comfortable with being uncomfortable in trading.
So, observe the markets, find profitable rules, and trade them. Despite how uncomfortable you find yourself trading them. Cause it's not about you...as Charlie Sheen so eloquently states...it is about winning.
Later Trades,
MT
Sunday, February 06, 2011
Portfolio Performance for January 2011
# of Entries.......8 # of Exits.........7
As you can see with the above entries & exits; still not much activity for the portfolio in January. I'm hoping this next month brings more action to the table.
On the development side of the house; I hit a snag with the simulation engine's backend database architecture. So, I've spent a few weeks performance testing the database components. I believe I've got all the performance issues squared away and plan to get back on track with the conversion over the next few weeks.
Later Trades,
MT
Sunday, January 16, 2011
Portfolio Performance for December 2010
The majority of positions just didn't budge. As a result, most positions were held to term limit. Which dropped the monthly number of trades down a bit when compared to average.
# of Trades for Dec 2010:
# of Long Entries........7
# of Long Exits.......... 7
Goal for January is to start migrating the backtesting engine from the old database design to the hopefully new & improved version.
As a side note, I've added a new movie to my all-time favorites list: The Social Network. A must-see if you've ever hacked a few lines here or there.
Later Trades,
MT
Collecting Max Items in Python
Lately, I've needed a way to collect a running list of the top X values and their associated items in Python. This is useful if you'd like to know such things as:
I'll cover the MinItems class in another post. But, to give you a hint of what does work in collecting the minimum values over a list is one of the alternatives I explored in building the MaxItems class...
Alternative yet Inefficient version of MaxItems:
Test Code:
MT
- Top 100 price gainers in your price series database;
- Top 10 most volatile stocks in your price series database;
- Top 5 longest running batch jobs in your operations arena;
- Any many more...
import heapq class MaxItems(object): """ Caches the max X items of whatever you're analyzing and returns a list containing only those max X values and associated items. """ def __init__(self, size): self.size = size self._recs = [] def push(self, value, items): if len(self._recs) < self.size: heapq.heappush(self._recs, (value, items)) else: minitem = heapq.heappushpop(self._recs, (value, items)) def items(self): return heapq.nlargest(self.size, self._recs)Example call and results:
pricegains = [] pricegains.append({'symbol':'GOOG', 'gain':234.0}) pricegains.append({'symbol':'YHOO', 'gain':124.0}) pricegains.append({'symbol':'IBM', 'gain':1242.0}) pricegains.append({'symbol':'GE', 'gain':1800.0}) pricegains.append({'symbol':'ENE', 'gain':0.0}) pricegains.append({'symbol':'KREM', 'gain':12.0}) maxitems = MaxItems(3) for row in pricegains: maxitems.push(row['gain'], row) print maxitems.items() ---------------------------------------------------------- Results of call: (1800.0, {'symbol': 'GE', 'gain': 1800.0}) (1242.0, {'symbol': 'IBM', 'gain': 1242.0}) (234.0, {'symbol': 'GOOG', 'gain': 234.0})The heapq module works nicely in accomplishing the task. What's ironic is Python's heapq module implements the min-heap algorithm which works out nicely and efficiently in determining the maximum values over a list. But, does not work out so efficiently for determining the minimum values over a list.
I'll cover the MinItems class in another post. But, to give you a hint of what does work in collecting the minimum values over a list is one of the alternatives I explored in building the MaxItems class...
Alternative yet Inefficient version of MaxItems:
import bisect class MaxItems2(object): """ Caches the max X items of whatever you're analyzing and returns a list containing only those max X values and associated items. """ def __init__(self, size): self.size = size self._recs = [] def push(self, value, items): if len(self._recs) < self.size: bisect.insort(self._recs, (value, items)) elif bisect.bisect(self._recs, (value, items)) > self.size: bisect.insort(self._recs, (value, items)) minitem = self._recs.pop(0) def items(self): return sorted(self._recs, reverse=True)MaxItems2 takes advantage of the bisect module and while it works great; performance is at a minimum 2x worse on average than using the heapq method.
Test Code:
import random pricegains = [] maxitems = MaxItems(100) for x in xrange(500000): gain = random.uniform(1.0,500.0) maxitems.push(gain, ('This', 'is', 'Record')) rows = maxitems.items()Calling the above code with the wonderful timeit module produced the following results:
- heapq method: Ten iterations finished in 1.90 seconds.
- bisect method: Ten iterations finished in 3.80 seconds.
MT
Saturday, December 04, 2010
Portfolio Performance for November 2010
The difficulty in managing a portfolio, as we all know, is handling "emotions". Most people when they think of emotions think of impulsiveness, recklessness, and not thinking things through. I'm not describing that at all. Dealing with emotions is dealing with my logic and experience. You've got a system handing you signals that have been thoroughly tested in all kinds of markets. But, your intellect wants to use your experience and logic to protect the portfolio from market damage.
You are bombarded with all the facts surrounding the markets and your brain wants to assemble the pieces into a perfect future of the investment landscape. You've got years of market experience, sound reasoning, and other "smart" market pundits and prognosticators on your side demanding you to interject your system's signals. How can you possibly take this next trade when the market's volatility is too smooth? Not enough risk is being reflected in the markets. The market has gone up too far and too fast for too long. The trap door is in plain sight and will open and your returns will fall...right?
This is why I trade systems. To protect my portfolio from the "emotions" of my highly analytical mind. And this November was a wonderful reinforcement of that lesson. I can't stress enough how important it is to review your backtests, especially the drawdowns and corresponding recoveries. Ask yourself, can you still enter trades given the investment landscape in that time period? Really think about this question...because that question will pop up often in your system trading future.
Later Trades,
MT
Thursday, November 25, 2010
Running Variance
Variance - kinda the bread and butter for analysis work on a time series. Doesn't get much respect though. But, take the square root of the variance and you get the almighty standard deviation. Today, though, let's give variance its due...
For an intro into variance...check out these posts:
Problem with variance is calculating it in the traditional sense. Its costly to compute across a time series. It can be quite a drag on your simulation engine's performance. The way to reduce the cost is to calculate the running variance. And that's when you get into quite a briar patch - loss of precision and overflow issues. See John D. Cook's post covering the variance briar patch:
And a few more posts by John covering different variance formulas and their outcomes:
So, let's start with the formula for the Power Sum Average (\(PSA\)):
\( PSA = PSA_{yesterday} + ( ( (x_{today} * x_{today}) - x_{yesterday} ) ) / n) \)
Where:
Once you have the \(PSA\) and \(SMA\); you can tackle the Running Population Variance (\(Var\) ):
\(Population Var = (PSA_{today} * n - n * SMA_{today} * SMA_{today}) / n \)
Now, one problem with all these formulas - they don't cover how to window the running variance. Windowing the variance gives you the ability to view the 20 period running variance at bar 150. All the formulas I've mentioned above only give you the running cumulative variance. Deriving the running windowed variance is just a matter of using the same SMA I've posted about before and adjusting the Power Sum Average to the following:
\( PSA = PSA_{yesterday} + (((x_{today} * x_{today}) - (x_{yesterday} * x_{yesterday}) / n) \)
Where:
\(Sample Var = (PSA_{today} * n - n * SMA_{today} * SMA_{today}) / (n - 1) \)
Okay, on to the code.
Code for the Power Sum Average:
Later Trades,
MT
For an intro into variance...check out these posts:
Problem with variance is calculating it in the traditional sense. Its costly to compute across a time series. It can be quite a drag on your simulation engine's performance. The way to reduce the cost is to calculate the running variance. And that's when you get into quite a briar patch - loss of precision and overflow issues. See John D. Cook's post covering the variance briar patch:
And a few more posts by John covering different variance formulas and their outcomes:
- Comparing three methods of computing standard deviation
- Theoretical explanation for numerical results
- Reduced the precision loss issue as much as possible;
- Allowed an easy way to window the running variance;
- Allowed an easy way to memoize the call.
So, let's start with the formula for the Power Sum Average (\(PSA\)):
\( PSA = PSA_{yesterday} + ( ( (x_{today} * x_{today}) - x_{yesterday} ) ) / n) \)
Where:
- \(x\) = value in your time series
- \(n\) = number of values you've analyzed so far
Once you have the \(PSA\) and \(SMA\); you can tackle the Running Population Variance (\(Var\) ):
\(Population Var = (PSA_{today} * n - n * SMA_{today} * SMA_{today}) / n \)
Now, one problem with all these formulas - they don't cover how to window the running variance. Windowing the variance gives you the ability to view the 20 period running variance at bar 150. All the formulas I've mentioned above only give you the running cumulative variance. Deriving the running windowed variance is just a matter of using the same SMA I've posted about before and adjusting the Power Sum Average to the following:
\( PSA = PSA_{yesterday} + (((x_{today} * x_{today}) - (x_{yesterday} * x_{yesterday}) / n) \)
Where:
- \(x\) = value in your time series
- \(n\) = the period
\(Sample Var = (PSA_{today} * n - n * SMA_{today} * SMA_{today}) / (n - 1) \)
Okay, on to the code.
Code for the Power Sum Average:
def powersumavg(bar, series, period, pval=None): """ Returns the power sum average based on the blog post from Subliminal Messages. Use the power sum average to help derive the running variance. sources: http://subluminal.wordpress.com/2008/07/31/running-standard-deviations/ Keyword arguments: bar -- current index or location of the value in the series series -- list or tuple of data to average period -- number of values to include in average pval -- previous powersumavg (n - 1) of the series. """ if period < 1: raise ValueError("period must be 1 or greater") if bar < 0: bar = 0 if pval == None: if bar > 0: raise ValueError("pval of None invalid when bar > 0") pval = 0.0 newamt = float(series[bar]) if bar < period: result = pval + (newamt * newamt - pval) / (bar + 1.0) else: oldamt = float(series[bar - period]) result = pval + (((newamt * newamt) - (oldamt * oldamt)) / period) return resultCode for the Running Windowed Variance:
def running_var(bar, series, period, asma, apowsumavg): """ Returns the running variance based on a given time period. sources: http://subluminal.wordpress.com/2008/07/31/running-standard-deviations/ Keyword arguments: bar -- current index or location of the value in the series series -- list or tuple of data to average asma -- current average of the given period apowsumavg -- current powersumavg of the given period """ if period < 1: raise ValueError("period must be 1 or greater") if bar <= 0: return 0.0 if asma == None: raise ValueError("asma of None invalid when bar > 0") if apowsumavg == None: raise ValueError("powsumavg of None invalid when bar > 0") windowsize = bar + 1.0 if windowsize >= period: windowsize = period return (apowsumavg * windowsize - windowsize * asma * asma) / windowsizeExample call and results:
list_of_values = [3, 5, 8, 10, 4, 8, 12, 15, 11, 9] prev_powersumavg = None prev_sma = None prev_sma = None period = 3 for bar, price in enumerate(list_of_values): new_sma = running_sma(bar, list_of_values, period, prev_sma) new_powersumavg = powersumavg(bar, list_of_values, period, prev_powersumavg) new_var = running_var(bar, list_of_values, period, new_sma, new_powersumavg) msg = "SMA=%.4f, PSA=%.4f, Var=%.4f" % (new_sma, new_powersumavg, new_var) print "bar %i: %s" % (bar, msg) prev_sma = new_sma prev_powersumavg = new_powersumavg ---------------------------------------------------------- Results of call: bar 0: SMA=3.0000, PSA=9.0000, Var=0.0000 bar 1: SMA=4.0000, PSA=17.0000, Var=1.0000 bar 2: SMA=5.3333, PSA=32.6667, Var=4.2222 bar 3: SMA=7.6667, PSA=63.0000, Var=4.2222 bar 4: SMA=7.3333, PSA=60.0000, Var=6.2222 bar 5: SMA=7.3333, PSA=60.0000, Var=6.2222 bar 6: SMA=8.0000, PSA=74.6667, Var=10.6667 bar 7: SMA=11.6667, PSA=144.3333, Var=8.2222 bar 8: SMA=12.6667, PSA=163.3333, Var=2.8889 bar 9: SMA=11.6667, PSA=142.3333, Var=6.2222Of course, as I said in the beginning of this post, just take the square root of this Running Windowed Variance to obtain the Standard Deviation.
Later Trades,
MT
Saturday, November 06, 2010
Portfolio Performance for October 2010
Back to back months of these kind of numbers make an old trader like me nervous. When's the trap door going to fall?
No doubt the current market environment is to the system's liking. One thing I need to explore is the system's position sizing algo. I position size based on the volatility of the stock over x days. But, lately the volatility on the stocks selected have been so small. Which is seriously underestimating the true risk of the position. So, need to perform some studies on how to handle volatility shrinkage during boom times like these.
On to the charts...
As you can see, we are officially out of the almost 3 year drawdown (knocking on wood as I type this).
What's ahead for TaylorTree? Spending what free time I have on preparing for another Missouri winter. Don't believe this Texas boy will ever get used to the cold. Also, working on the continued upgrade of the database and record structures of the simulation engine. Tests so far have proved the new structures are much faster and memory efficient...but have yet to test on the type of data demands the simulation engine handles - 10GB+.
Later Trades,
MT
No doubt the current market environment is to the system's liking. One thing I need to explore is the system's position sizing algo. I position size based on the volatility of the stock over x days. But, lately the volatility on the stocks selected have been so small. Which is seriously underestimating the true risk of the position. So, need to perform some studies on how to handle volatility shrinkage during boom times like these.
On to the charts...
What's ahead for TaylorTree? Spending what free time I have on preparing for another Missouri winter. Don't believe this Texas boy will ever get used to the cold. Also, working on the continued upgrade of the database and record structures of the simulation engine. Tests so far have proved the new structures are much faster and memory efficient...but have yet to test on the type of data demands the simulation engine handles - 10GB+.
Later Trades,
MT
Subscribe to:
Posts (Atom)